{ "id": "1401.0836", "version": "v1", "published": "2014-01-04T18:48:01.000Z", "updated": "2014-01-04T18:48:01.000Z", "title": "Sequential edge-coloring on the subset of vertices of almost regular graphs", "authors": [ "Petros A. Petrosyan" ], "comment": "4 pages", "categories": [ "math.CO", "cs.DM" ], "abstract": "Let $G$ be a graph and $R\\subseteq V(G)$. A proper edge-coloring of a graph $G$ with colors $1,\\ldots,t$ is called an $R$-sequential $t$-coloring if the edges incident to each vertex $v\\in R$ are colored by the colors $1,\\ldots,d_{G}(v)$, where $d_{G}(v)$ is the degree of the vertex $v$ in $G$. In this note, we show that if $G$ is a graph with $\\Delta(G)-\\delta(G)\\leq 1$ and $\\chi^{\\prime}(G)=\\Delta(G)=r$ ($r\\geq 3$), then $G$ has an $R$-sequential $r$-coloring with $\\vert R\\vert \\geq \\left\\lceil\\frac{(r-1)n_{r}+n}{r}\\right\\rceil$, where $n=\\vert V(G)\\vert$ and $n_{r}=\\vert\\{v\\in V(G):d_{G}(v)=r\\}\\vert$. As a corollary, we obtain the following result: if $G$ is a graph with $\\Delta(G)-\\delta(G)\\leq 1$ and $\\chi^{\\prime}(G)=\\Delta(G)=r$ ($r\\geq 3$), then $\\Sigma^{\\prime}(G)\\leq \\left\\lfloor\\frac {2n_{r}(2r-1)+n(r-1)(r^{2}+2r-2)}{4r}\\right\\rfloor$, where $\\Sigma^{\\prime}(G)$ is the edge-chromatic sum of $G$.", "revisions": [ { "version": "v1", "updated": "2014-01-04T18:48:01.000Z" } ], "analyses": { "keywords": [ "regular graphs", "sequential edge-coloring", "edges incident", "edge-chromatic sum" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.0836P" } } }