{ "id": "1401.0493", "version": "v1", "published": "2014-01-02T18:14:02.000Z", "updated": "2014-01-02T18:14:02.000Z", "title": "Congruences for $q^{[p/8]}\\pmod p$ II", "authors": [ "Zhi-Hong Sun" ], "comment": "28 pages. arXiv admin note: substantial text overlap with arXiv:1108.3027", "categories": [ "math.NT" ], "abstract": "Let $\\Bbb Z$ be the set of integers, and let $p$ be a prime of the form $4k+1$. Suppose $q\\in\\Bbb Z$, $2\\nmid q$, $p\\nmid q$, $p=c^2+d^2$, $c,d\\in\\Bbb Z$ and $c\\equiv 1\\pmod 4$. In this paper we continue to discuss congruences for $q^{[p/8]}\\pmod p$ and present new reciprocity laws, but we assume $4p=x^2+qy^2$ or $p=x^2+2qy^2$, where $[\\cdot]$ is the greatest integer function and $x,y\\in\\Bbb Z$.", "revisions": [ { "version": "v1", "updated": "2014-01-02T18:14:02.000Z" } ], "analyses": { "subjects": [ "11A15", "11A07", "11E25" ], "keywords": [ "congruences", "greatest integer function", "reciprocity laws" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.0493S" } } }