{ "id": "1401.0233", "version": "v1", "published": "2014-01-01T00:05:55.000Z", "updated": "2014-01-01T00:05:55.000Z", "title": "A positive proportion of elliptic curves over $\\mathbb{Q}$ have rank one", "authors": [ "Manjul Bhargava", "Christopher Skinner" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "We prove that, when all elliptic curves over $\\mathbb{Q}$ are ordered by naive height, a positive proportion have both algebraic and analytic rank one. It follows that the average rank and the average analytic rank of elliptic curves are both strictly positive.", "revisions": [ { "version": "v1", "updated": "2014-01-01T00:05:55.000Z" } ], "analyses": { "subjects": [ "11G05", "11R45" ], "keywords": [ "elliptic curves", "positive proportion", "average analytic rank", "average rank" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.0233B" } } }