{ "id": "1401.0228", "version": "v2", "published": "2013-12-31T22:51:32.000Z", "updated": "2014-05-13T17:20:21.000Z", "title": "E-polynomial of SL(2,C)-Character Varieties of Free groups", "authors": [ "Samuel Cavazos", "Sean Lawton" ], "comment": "23 pages; v2 has a more streamlined exposition, and includes additional references; to appear in International Journal of Mathematics", "journal": "Internat. J. Math. 25 (2014), no. 6, 1450058 (27 pages)", "doi": "10.1142/S0129167X1450058X", "categories": [ "math.AG", "math.GN", "math.NT", "math.RT" ], "abstract": "Let $\\mathsf{F}_r$ be a free group of rank $r$, $\\mathbb{F}_q$ a finite field of order q, and let $\\mathrm{SL}_n(\\mathbb{F}_q)$ act on $\\mathrm{Hom}(\\mathsf{F}_r, \\mathrm{SL}_n(\\mathbb{F}_q))$ by conjugation. We describe a general algorithm to determine the cardinality of the set of orbits $\\mathrm{Hom}(\\mathsf{F}_r, \\mathrm{SL}_n(\\mathbb{F}_q))/\\mathrm{SL}_n(\\mathbb{F}_q)$. Our first main theorem is the implementation of this algorithm in the case $n=2$. As an application, we determine the $E$-polynomial of the character variety $\\mathrm{Hom}(\\mathsf{F}_r, \\mathrm{SL}_2(\\mathbb{C}))//!/\\mathrm{SL}_2(\\mathbb{C})$, and of its smooth and singular locus. Thus we determine the Euler characteristic of these spaces.", "revisions": [ { "version": "v2", "updated": "2014-05-13T17:20:21.000Z" } ], "analyses": { "subjects": [ "14L30", "14D20", "14G05", "14G15" ], "keywords": [ "free group", "e-polynomial", "first main theorem", "character variety", "euler characteristic" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.0228C" } } }