{ "id": "1312.7739", "version": "v1", "published": "2013-12-30T15:30:25.000Z", "updated": "2013-12-30T15:30:25.000Z", "title": "Cyclicity in reproducing kernel Hilbert spaces of analytic functions", "authors": [ "Emmanuel Fricain", "Javad Mashreghi", "Daniel Seco" ], "comment": "16 pages", "categories": [ "math.CA" ], "abstract": "We introduce a large family of reproducing kernel Hilbert spaces $\\mathcal{H} \\subset \\mbox{Hol}(\\mathbb{D})$, which include the classical Dirichlet-type spaces $\\mathcal{D}_\\alpha$, by requiring normalized monomials to form a Riesz basis for $\\mathcal{H}$. Then, after precisely evaluating the $n$-th optimal norm and the $n$-th approximant of $f(z)=1-z$, we completely characterize the cyclicity of functions in $\\mbox{Hol}(\\overline{\\mathbb{D}})$ with respect to the forward shift.", "revisions": [ { "version": "v1", "updated": "2013-12-30T15:30:25.000Z" } ], "analyses": { "subjects": [ "47A16", "47B32", "47B37" ], "keywords": [ "reproducing kernel hilbert spaces", "analytic functions", "th optimal norm", "classical dirichlet-type spaces", "th approximant" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.7739F" } } }