{ "id": "1312.7548", "version": "v2", "published": "2013-12-29T15:18:41.000Z", "updated": "2014-01-02T18:05:42.000Z", "title": "Proof of two divisibility properties of binomial coefficients conjectured by Z.-W. Sun", "authors": [ "Victor J. W. Guo" ], "comment": "13 pages, add many new results", "categories": [ "math.NT", "math.CO" ], "abstract": "For all positive integers n, we prove the following divisibility properties: $$(2n+3){2n\\choose n} | 3{6n\\choose 3n}{3n\\choose n}, and (10n+3){3n\\choose n} | 21{15n\\choose 5n} {5n\\choose n}.$$ This confirms two recent conjectures of Z.-W. Sun. Some similar divisibility properties are given. Moreover, we show that, for all positive integers m and n, the product $am{am+bm-1\\choose am}{an+bn\\choose an}$ is divisible by m+n. In fact, the latter result can be generalized to the q-binomial coefficients and q-integers case, which generalizes the positivity of q-Catalan numbers. We also propose several related conjectures.", "revisions": [ { "version": "v2", "updated": "2014-01-02T18:05:42.000Z" } ], "analyses": { "subjects": [ "11B65", "05A10", "05A30" ], "keywords": [ "binomial coefficients", "positive integers", "similar divisibility properties", "q-catalan numbers", "conjectures" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.7548G" } } }