{ "id": "1312.7515", "version": "v1", "published": "2013-12-29T10:31:13.000Z", "updated": "2013-12-29T10:31:13.000Z", "title": "A Stone-Weierstrass theorem for MV-algebras and unital $\\ell$-groups", "authors": [ "L. M. Cabrer", "D. Mundici" ], "categories": [ "math.LO" ], "abstract": "Working jointly in the equivalent categories of MV-al\\-ge\\-bras and lattice-ordered abelian groups with strong order unit (for short, unital $\\ell$-groups), we prove that isomorphism is a sufficient condition for a separating subalgebra $A$ of a finitely presented algebra $F$ to coincide with $F$. The separation and isomorphism conditions do not individually imply $A=F$. Various related problems, like the separation property of $A$, or $A\\cong F$ (for $A$ a separating subalgebra of $F$), are shown to be (Turing-)decidable. We use tools from algebraic topology, category theory, polyhedral geometry and computational algebraic logic.", "revisions": [ { "version": "v1", "updated": "2013-12-29T10:31:13.000Z" } ], "analyses": { "subjects": [ "06D35" ], "keywords": [ "stone-weierstrass theorem", "mv-algebras", "computational algebraic logic", "strong order unit", "separating subalgebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.7515C" } } }