{ "id": "1312.7448", "version": "v1", "published": "2013-12-28T16:38:13.000Z", "updated": "2013-12-28T16:38:13.000Z", "title": "Exceptional representations of quivers", "authors": [ "Claus Michael Ringel" ], "categories": [ "math.RT" ], "abstract": "Let Q be a connected directed quiver with n vertices. We show that Q is representation-infinite if and only if there do exist n isomorphism classes of exceptional modules of some fixed length at least 2.", "revisions": [ { "version": "v1", "updated": "2013-12-28T16:38:13.000Z" } ], "analyses": { "subjects": [ "16G20", "16G60", "16D90", "17B22" ], "keywords": [ "exceptional representations", "isomorphism classes", "exceptional modules" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.7448R" } } }