{ "id": "1312.7049", "version": "v3", "published": "2013-12-26T03:50:55.000Z", "updated": "2013-12-31T08:17:42.000Z", "title": "Ehrhart polynomials with negative coefficients", "authors": [ "Takayuki Hibi", "Akihiro Higashitani", "Akiyoshi Tsuchiya", "Koutarou Yoshida" ], "comment": "4 pages", "categories": [ "math.CO" ], "abstract": "It is shown that, for each $d \\geq 4$, there exists an integral convex polytope $\\mathcal{P}$ of dimension $d$ such that each of the coefficients of $n, n^{2}, \\ldots, n^{d-2}$ of its Ehrhart polynomial $i(\\mathcal{P},n)$ is negative.", "revisions": [ { "version": "v3", "updated": "2013-12-31T08:17:42.000Z" } ], "analyses": { "subjects": [ "52B20", "52B11" ], "keywords": [ "ehrhart polynomial", "negative coefficients", "integral convex polytope" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.7049H" } } }