{ "id": "1312.5715", "version": "v1", "published": "2013-12-19T19:53:34.000Z", "updated": "2013-12-19T19:53:34.000Z", "title": "Integral functionals on $L^p$-spaces: infima over sub-level sets", "authors": [ "Biagio Ricceri" ], "categories": [ "math.OC" ], "abstract": "In this paper, we establish the following result: Let $(T,{\\cal F},\\mu)$ be a $\\sigma$-finite measure space, let $Y$ be a reflexive real Banach space, and let $\\varphi, \\psi:Y\\to {\\bf R}$ be two sequentially weakly lower semicontinuous functionals such that $$\\inf_{y\\in Y}{{\\min\\{\\varphi(y),\\psi(y)\\}}\\over {1+\\|y\\|^p}}>-\\infty$$ for some $p>0$. Moreover, assume that $\\varphi$ has no global minima, while $\\varphi+\\lambda\\psi$ is coercive and has a unique global minimum for each $\\lambda>0$. Then, for each $\\gamma\\in L^{\\infty}(T)\\cap L^1(T)\\setminus \\{0\\}$, with $\\gamma\\geq 0$, and for each $r>\\inf_{Y}\\psi$, if we put $$V_{\\gamma,r}= \\left \\{u\\in L^p(T,Y) : \\int_T\\gamma(t)\\psi(u(t))d\\mu\\leq r\\int_T\\gamma(t)d\\mu\\right \\}\\ ,$$ we have $$\\inf_{u\\in V_{\\gamma,r}} \\int_T\\gamma(t)\\varphi(u(t))d\\mu= \\inf_{\\psi^{-1}(r)}\\varphi\\int_T\\gamma(t)d\\mu\\ .$$", "revisions": [ { "version": "v1", "updated": "2013-12-19T19:53:34.000Z" } ], "analyses": { "keywords": [ "integral functionals", "sub-level sets", "reflexive real banach space", "unique global minimum", "finite measure space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.5715R" } } }