{ "id": "1312.5615", "version": "v2", "published": "2013-12-19T16:19:14.000Z", "updated": "2014-11-26T17:07:33.000Z", "title": "Maximal subgroups of multi-edge spinal groups", "authors": [ "Theofanis Alexoudas", "Benjamin Klopsch", "Anitha Thillaisundaram" ], "comment": "25 pages; includes minor corrections and clarifications", "categories": [ "math.GR" ], "abstract": "A multi-edge spinal group is a subgroup of the automorphism group of a regular p-adic rooted tree, generated by one rooted automorphism and a finite number of directed automorphisms sharing a common directing path. We prove that torsion multi-edge spinal groups do not have maximal subgroups of infinite index. This generalizes a result of Pervova for GGS-groups.", "revisions": [ { "version": "v1", "updated": "2013-12-19T16:19:14.000Z", "comment": "24 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-11-26T17:07:33.000Z" } ], "analyses": { "subjects": [ "20E08", "20E28" ], "keywords": [ "maximal subgroups", "torsion multi-edge spinal groups", "regular p-adic rooted tree", "infinite index", "finite number" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.5615A" } } }