{ "id": "1312.5590", "version": "v1", "published": "2013-12-19T15:34:15.000Z", "updated": "2013-12-19T15:34:15.000Z", "title": "The structure of Siegel modular forms modulo p and U(p) congruences", "authors": [ "Martin Raum", "Olav Richter" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "We determine the ring structure of Siegel modular forms of degree g modulo a prime p, extending Nagaoka's result in the case of degree g=2. We characterize U(p) congruences of Jacobi forms and Siegel modular forms, and surprisingly find different behaviors of Siegel modular forms of even and odd degrees.", "revisions": [ { "version": "v1", "updated": "2013-12-19T15:34:15.000Z" } ], "analyses": { "subjects": [ "11F33", "11F46", "11F50" ], "keywords": [ "siegel modular forms modulo", "congruences", "odd degrees", "jacobi forms", "extending nagaokas result" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.5590R" } } }