{ "id": "1312.5473", "version": "v2", "published": "2013-12-19T10:42:46.000Z", "updated": "2014-09-04T15:57:21.000Z", "title": "Harnack inequalities on weighted graphs and some applications to the random conductance model", "authors": [ "Sebastian Andres", "Jean-Dominique Deuschel", "Martin Slowik" ], "comment": "43 pages, 2 figure, companion paper to arXiv:1306.2521", "categories": [ "math.PR", "math.AP" ], "abstract": "We establish elliptic and parabolic Harnack inequalities on graphs with unbounded weights. As an application we prove a local limit theorem for a continuous time random walk $X$ in an environment of ergodic random conductances taking values in $[0, \\infty)$ satisfying some moment conditions.", "revisions": [ { "version": "v1", "updated": "2013-12-19T10:42:46.000Z", "title": "Harnack inequalities on weighted graphs and some applications for the random conductance model", "comment": "39 pages, 1 figure. arXiv admin note: text overlap with arXiv:1306.2521", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-09-04T15:57:21.000Z" } ], "analyses": { "subjects": [ "31B05", "39A12", "60J35", "60K37", "82C41" ], "keywords": [ "random conductance model", "weighted graphs", "application", "parabolic harnack inequalities", "ergodic random conductances" ], "note": { "typesetting": "TeX", "pages": 43, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.5473A" } } }