{ "id": "1312.4822", "version": "v1", "published": "2013-12-17T15:22:09.000Z", "updated": "2013-12-17T15:22:09.000Z", "title": "Néron models of algebraic curves", "authors": [ "Qing Liu", "Jilong Tong" ], "comment": "32 pages", "categories": [ "math.AG", "math.NT" ], "abstract": "Let S be a Dedekind scheme with field of functions K. We show that if X_K is a smooth connected proper curve of positive genus over K, then it admits a N\\'eron model over S, i.e., a smooth separated model of finite type satisfying the usual N\\'eron mapping property. It is given by the smooth locus of the minimal proper regular model of X_K over S, as in the case of elliptic curves. When S is excellent, a similar result holds for connected smooth affine curves different from the affine line, with locally finite type N\\'eron models.", "revisions": [ { "version": "v1", "updated": "2013-12-17T15:22:09.000Z" } ], "analyses": { "subjects": [ "14H25", "14G20", "14G40", "11G35" ], "keywords": [ "algebraic curves", "néron models", "locally finite type neron models", "minimal proper regular model", "smooth connected proper curve" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.4822L" } } }