{ "id": "1312.4502", "version": "v1", "published": "2013-12-16T20:22:45.000Z", "updated": "2013-12-16T20:22:45.000Z", "title": "Computing the unknotting numbers of certain pretzel knots", "authors": [ "Seph Shewell Brockway" ], "comment": "10 pages, 4 figures. Edited excerpt of author's MSc thesis", "categories": [ "math.GT" ], "abstract": "We compute the unknotting number of two infinite families of pretzel knots, $P(3,1,\\dots,1,b)$ (with $b$ positive and odd and an odd number of 1s) and $P(3,3,3c)$ (with $c$ positive and odd). To do this, we extend a technique of Owens using Donaldson's diagonalization theorem, and one of Traczyk using the Jones polynomial, building on work of Lickorish and Millett.", "revisions": [ { "version": "v1", "updated": "2013-12-16T20:22:45.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27" ], "keywords": [ "pretzel knots", "unknotting number", "donaldsons diagonalization theorem", "odd number", "infinite families" ], "tags": [ "dissertation" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.4502S" } } }