{ "id": "1312.4096", "version": "v1", "published": "2013-12-15T01:04:34.000Z", "updated": "2013-12-15T01:04:34.000Z", "title": "A Simple Proof of the Cayley Formula using Random Graphs", "authors": [ "Scott Wu", "Ray Li", "Andrew He", "Steven Hao" ], "categories": [ "math.CO" ], "abstract": "We present a nice result on the probability of a cycle occurring in a randomly generated graph. We then provide some extensions and applications, including the proof of the famous Cayley formula, which states that the number of labeled trees on $n$ vertices is $n^{n-2}.$", "revisions": [ { "version": "v1", "updated": "2013-12-15T01:04:34.000Z" } ], "analyses": { "subjects": [ "05C80", "05C05", "05C38" ], "keywords": [ "random graphs", "simple proof", "nice result", "famous cayley formula", "probability" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.4096W" } } }