{ "id": "1312.4053", "version": "v1", "published": "2013-12-14T15:00:23.000Z", "updated": "2013-12-14T15:00:23.000Z", "title": "Refined class number formulas for $\\mathbb{G}_m$", "authors": [ "Barry Mazur", "Karl Rubin" ], "categories": [ "math.NT" ], "abstract": "We formulate a generalization of a `refined class number formula' of Darmon. Our conjecture deals with Stickelberger-type elements formed from generalized Stark units, and has two parts: the `order of vanishing' and the `leading term'. Using the theory of Kolyvagin systems we prove a large part of this conjecture when the order of vanishing of the corresponding complex $L$-function is $1$.", "revisions": [ { "version": "v1", "updated": "2013-12-14T15:00:23.000Z" } ], "analyses": { "subjects": [ "11R42", "11R27", "11R23" ], "keywords": [ "refined class number formula", "conjecture deals", "stickelberger-type elements", "generalized stark units", "kolyvagin systems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.4053M" } } }