{ "id": "1312.3974", "version": "v1", "published": "2013-12-13T22:34:55.000Z", "updated": "2013-12-13T22:34:55.000Z", "title": "The Hamiltonian Mechanics of Stochastic Acceleration", "authors": [ "J. W. Burby", "A. I. Zhmoginov", "H. Qin" ], "comment": "12 pages", "journal": "J. W. Burby, A. I. Zhmoginov, and H. Qin, Phys. Rev. Lett. 111, 195001 (2013)", "doi": "10.1103/PhysRevLett.111.195001", "categories": [ "math-ph", "math.MP", "physics.plasm-ph" ], "abstract": "We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.", "revisions": [ { "version": "v1", "updated": "2013-12-13T22:34:55.000Z" } ], "analyses": { "subjects": [ "52.25.Gj", "05.10.Gg", "05.40.-a", "52.65.-y" ], "keywords": [ "hamiltonian mechanics", "stochastic differential equations retain", "particles undergoing collisionless stochastic acceleration", "stochastic variational integrators", "physical langevin equation" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review Letters", "year": 2013, "month": "Nov", "volume": 111, "number": 19, "pages": 195001 }, "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013PhRvL.111s5001B" } } }