{ "id": "1312.3909", "version": "v1", "published": "2013-12-13T19:15:01.000Z", "updated": "2013-12-13T19:15:01.000Z", "title": "Shape Optimization Problems for Metric Graphs", "authors": [ "Giuseppe Buttazzo", "Berardo Ruffini", "Bozhidar Velichkov" ], "comment": "23 pages, 11 figures, ESAIM Control Optim. Calc. Var., (to appear)", "doi": "10.1051/cocv/2013050", "categories": [ "math.OC", "math.CO" ], "abstract": "We consider the shape optimization problem $$\\min\\big\\{{\\mathcal E}(\\Gamma)\\ :\\ \\Gamma\\in{\\mathcal A},\\ {\\mathcal H}^1(\\Gamma)=l\\ \\big\\},$$ where ${\\mathcal H}^1$ is the one-dimensional Hausdorff measure and ${\\mathcal A}$ is an admissible class of one-dimensional sets connecting some prescribed set of points ${\\mathcal D}=\\{D_1,\\dots,D_k\\}\\subset{\\mathbb R}^d$. The cost functional ${\\mathcal E}(\\Gamma)$ is the Dirichlet energy of $\\Gamma$ defined through the Sobolev functions on $\\Gamma$ vanishing on the points $D_i$. We analyze the existence of a solution in both the families of connected sets and of metric graphs. At the end, several explicit examples are discussed.", "revisions": [ { "version": "v1", "updated": "2013-12-13T19:15:01.000Z" } ], "analyses": { "subjects": [ "49R05", "49Q20", "49J45", "81Q35" ], "keywords": [ "shape optimization problem", "metric graphs", "one-dimensional hausdorff measure", "one-dimensional sets", "cost functional" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.3909B" } } }