{ "id": "1312.3659", "version": "v2", "published": "2013-12-12T21:47:41.000Z", "updated": "2015-03-04T16:51:24.000Z", "title": "Lattice structure of torsion classes for path algebras", "authors": [ "Osamu Iyama", "Idun Reiten", "Hugh Thomas", "Gordana Todorov" ], "comment": "10 pages. Minor errors are corrected, and references are updated in the second version", "categories": [ "math.RT" ], "abstract": "We consider module categories of path algebras of connected acyclic quivers. It is shown in this paper that the set of functorially finite torsion classes form a lattice if and only if the quiver is either Dynkin quiver of type A, D, E, or the quiver has exactly two vertices.", "revisions": [ { "version": "v1", "updated": "2013-12-12T21:47:41.000Z", "comment": "10 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-03-04T16:51:24.000Z" } ], "analyses": { "subjects": [ "16G20", "18E40", "05E10" ], "keywords": [ "path algebras", "lattice structure", "functorially finite torsion classes form", "module categories", "connected acyclic quivers" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.3659I" } } }