{ "id": "1312.3580", "version": "v1", "published": "2013-12-12T18:37:03.000Z", "updated": "2013-12-12T18:37:03.000Z", "title": "Bounding the smallest singular value of a random matrix without concentration", "authors": [ "Vladimir Koltchinskii", "Shahar Mendelson" ], "categories": [ "math.PR" ], "abstract": "Given $X$ a random vector in ${\\mathbb{R}}^n$, set $X_1,...,X_N$ to be independent copies of $X$ and let $\\Gamma=\\frac{1}{\\sqrt{N}}\\sum_{i=1}^N e_i$ be the matrix whose rows are $\\frac{X_1}{\\sqrt{N}},\\dots, \\frac{X_N}{\\sqrt{N}}$. We obtain sharp probabilistic lower bounds on the smallest singular value $\\lambda_{\\min}(\\Gamma)$ in a rather general situation, and in particular, under the assumption that $X$ is an isotropic random vector for which $\\sup_{t\\in S^{n-1}}{\\mathbb{E}}||^{2+\\eta} \\leq L$ for some $L,\\eta>0$. Our results imply that a Bai-Yin type lower bound holds for $\\eta>2$, and, up to a log-factor, for $\\eta=2$ as well. The bounds hold without any additional assumptions on the Euclidean norm $\\|X\\|_{\\ell_2^n}$. Moreover, we establish a nontrivial lower bound even without any higher moment assumptions (corresponding to the case $\\eta=0$), if the linear forms satisfy a weak `small ball' property.", "revisions": [ { "version": "v1", "updated": "2013-12-12T18:37:03.000Z" } ], "analyses": { "keywords": [ "smallest singular value", "random matrix", "bai-yin type lower bound holds", "concentration", "sharp probabilistic lower bounds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.3580K" } } }