{ "id": "1312.2829", "version": "v3", "published": "2013-12-10T15:15:24.000Z", "updated": "2013-12-12T08:38:54.000Z", "title": "A weak form of Hadwiger's conjecture", "authors": [ "Dominic van der Zypen" ], "categories": [ "math.CO" ], "abstract": "We introduce the following weak version of Hadwiger's conjecture: If $G$ is a graph and $\\kappa$ is a cardinal such that there is no coloring map $c:G \\to \\kappa$, then $K_\\kappa$ is a minor of $G$. We prove that this statement is true for graphs with infinite chromatic number", "revisions": [ { "version": "v3", "updated": "2013-12-12T08:38:54.000Z" } ], "analyses": { "subjects": [ "05C15", "05C83" ], "keywords": [ "hadwigers conjecture", "weak form", "infinite chromatic number", "weak version", "coloring map" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.2829V" } } }