{ "id": "1312.2812", "version": "v1", "published": "2013-12-10T14:31:22.000Z", "updated": "2013-12-10T14:31:22.000Z", "title": "Measure and Hausdorff dimension of randomized Weierstrass-type functions", "authors": [ "Julia Romanowska" ], "categories": [ "math.DS" ], "abstract": "In this paper we consider functions of the type $$f(x) = \\sum_{n=0}^\\infty a_n g(b_nx+\\theta_n),$$ where $(a_n)$ are independent random variables uniformly distributed on $(-a^n, a^n)$ for some $01$, $a^2b> 1$ and $g$ is a $C^1$ periodic real function with finite number of critical points in every bounded interval. We prove that the occupation measure for $f$ has $L^2$ density almost surely. Furthermore, the Hausdorff dimension of the graph of $f$ is almost surely equal to $D = 2+ \\log{a}/\\log{b}$ provided $ b = \\lim_{n\\rightarrow \\infty}b_{n+1}/b_n>1$ and $ab>1$.", "revisions": [ { "version": "v1", "updated": "2013-12-10T14:31:22.000Z" } ], "analyses": { "subjects": [ "28A80", "28A78", "37A45" ], "keywords": [ "randomized weierstrass-type functions", "hausdorff dimension", "periodic real function", "independent random variables", "occupation measure" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/0951-7715/27/4/787", "journal": "Nonlinearity", "year": 2014, "month": "Apr", "volume": 27, "number": 4, "pages": 787 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014Nonli..27..787R" } } }