{ "id": "1312.2727", "version": "v2", "published": "2013-12-10T09:40:40.000Z", "updated": "2014-07-23T15:13:42.000Z", "title": "Quasi-symmetric functions as polynomial functions on Young diagrams", "authors": [ "Jean-Christophe Aval", "Valentin Féray", "Jean-Christophe Novelli", "Jean-Yves Thibon" ], "comment": "34 pages, 4 figures, version including minor modifications suggested by referees", "categories": [ "math.CO" ], "abstract": "We determine the most general form of a smooth function on Young diagrams, that is, a polynomial in the interlacing or multirectangular coordinates whose value depends only on the shape of the diagram. We prove that the algebra of such functions is isomorphic to quasi-symmetric functions, and give a noncommutative analog of this result.", "revisions": [ { "version": "v2", "updated": "2014-07-23T15:13:42.000Z" } ], "analyses": { "subjects": [ "05E05", "05E10" ], "keywords": [ "young diagrams", "quasi-symmetric functions", "polynomial functions", "general form", "multirectangular coordinates" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.2727A" } } }