{ "id": "1312.2554", "version": "v3", "published": "2013-12-09T19:33:13.000Z", "updated": "2015-03-12T21:31:59.000Z", "title": "Gaussian curvature in codimension > 1", "authors": [ "Daniel Alvarez-Gavela" ], "comment": "Paper has been withdrawn because some of the claims made were false", "categories": [ "math.DG" ], "abstract": "The Gaussian curvature $K$ is a fundamental geometric quantity discovered by Gauss in the case of surfaces embedded in $\\mathbb{R}^3$. One can naturally extend the definition of the Gaussian curvature to arbitrary submanifolds of $\\mathbb{R}^k$ so that the extrinsic interpretation of $K$, the Theorema Egregium and the Gauss-Bonnet Theorem still hold. We give a concise exposition of these classical facts.", "revisions": [ { "version": "v2", "updated": "2014-01-07T18:51:36.000Z", "comment": "6 pages", "journal": null, "doi": null }, { "version": "v3", "updated": "2015-03-12T21:31:59.000Z" } ], "analyses": { "keywords": [ "gaussian curvature", "codimension", "fundamental geometric quantity", "arbitrary submanifolds", "gauss-bonnet theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.2554A" } } }