{ "id": "1312.2170", "version": "v1", "published": "2013-12-08T03:39:09.000Z", "updated": "2013-12-08T03:39:09.000Z", "title": "A Class of Kazhdan-Lusztig R-Polynomials and q-Fibonacci Numbers", "authors": [ "William Y. C. Chen", "Neil J. Y. Fan", "Peter L. Guo", "Michael X. X. Zhong" ], "comment": "11 pages", "categories": [ "math.CO" ], "abstract": "Let $S_n$ denote the symmetric group on $\\{1,2,\\ldots,n\\}$. For two permutations $u, v\\in S_n$ such that $u\\leq v$ in the Bruhat order, let $R_{u,v}(q)$ and $\\R_{u,v}(q)$ denote the Kazhdan-Lusztig $R$-polynomial and $\\R$-polynomial, respectively. Let $v_n=34\\cdots n\\, 12$, and let $\\sigma$ be a permutation such that $\\sigma\\leq v_n$. We obtain a formula for the $\\R$-polynomials $\\R_{\\sigma,v_n}(q)$ in terms of the $q$-Fibonacci numbers depending on a parameter determined by the reduced expression of $\\sigma$. When $\\sigma$ is the identity $e$, this reduces to a formula obtained by Pagliacci. In another direction, we obtain a formula for the $\\R$-polynomial $\\R_{e,\\,v_{n,i}}(q)$, where $v_{n,i} = 3 4\\cdots i\\,n\\, (i+1)\\cdots (n-1)\\, 12$. In a more general context, we conjecture that for any two permutations $\\sigma,\\tau\\in S_n$ such that $\\sigma\\leq \\tau\\leq v_n$, the $\\R$-polynomial $\\R_{\\sigma,\\tau}(q)$ can be expressed as a product of $q$-Fibonacci numbers multiplied by a power of $q$.", "revisions": [ { "version": "v1", "updated": "2013-12-08T03:39:09.000Z" } ], "analyses": { "subjects": [ "05E15", "20F55" ], "keywords": [ "kazhdan-lusztig r-polynomials", "q-fibonacci numbers", "permutation", "general context", "symmetric group" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.2170C" } } }