{ "id": "1312.2081", "version": "v1", "published": "2013-12-07T10:11:20.000Z", "updated": "2013-12-07T10:11:20.000Z", "title": "The Ramsey numbers of paths versus wheels: a complete solution", "authors": [ "Binlong Li", "Bo Ning" ], "comment": "32 pages, 1 table", "categories": [ "math.CO" ], "abstract": "Let $G_1$ and $G_2$ be two given graphs. The Ramsey number $R(G_1,G_2)$ is the least integer $r$ such that for every graph $G$ on $r$ vertices, either $G$ contains a $G_1$ or $\\overline{G}$ contains a $G_2$. We denote by $P_n$ the path on $n$ vertices and $W_m$ the wheel on $m+1$ vertices. Chen et al. and Zhang determined the values of $R(P_n,W_m)$ when $m\\leq n+1$ and when $n+2\\leq m\\leq 2n$, respectively. In this paper we determine all the values of $R(P_n,W_m)$ for the left case $m\\geq 2n+1$. Together with Chen et al's and Zhang's results, we give a complete solution to the problem of determining the Ramsey numbers of paths versus wheels.", "revisions": [ { "version": "v1", "updated": "2013-12-07T10:11:20.000Z" } ], "analyses": { "subjects": [ "05C55", "05D10" ], "keywords": [ "ramsey number", "complete solution", "left case", "zhangs results" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.2081L" } } }