{ "id": "1312.2051", "version": "v1", "published": "2013-12-07T02:24:18.000Z", "updated": "2013-12-07T02:24:18.000Z", "title": "Cyclically consecutive permutation avoidance", "authors": [ "Richard Ehrenborg" ], "comment": "6 pages", "categories": [ "math.CO" ], "abstract": "We give an explicit formula for the number of permutations avoiding cyclically a consecutive pattern in terms of the spectrum of the associated operator of the consecutive pattern. As an example, the number of cyclically consecutive $123$-avoiding permutations in ${\\mathfrak S}_{n}$ is given by $n!$ times the convergent series ${\\displaystyle \\sum_{k=-\\infty}^{\\infty} \\left(\\frac{\\sqrt{3}}{2\\pi(k+1/3)}\\right)^{n}}$ for $n \\geq 2$.", "revisions": [ { "version": "v1", "updated": "2013-12-07T02:24:18.000Z" } ], "analyses": { "subjects": [ "05A05", "05A15", "45C05" ], "keywords": [ "cyclically consecutive permutation avoidance", "explicit formula", "convergent series", "consecutive pattern", "associated operator" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.2051E" } } }