{ "id": "1312.1745", "version": "v1", "published": "2013-12-06T01:04:45.000Z", "updated": "2013-12-06T01:04:45.000Z", "title": "Strichartz estimates for wave equation with inverse square potential", "authors": [ "Changxing Miao", "Junyong Zhang", "Jiqiang Zheng" ], "comment": "24pages", "journal": "Communications in Contemporary Mathematics, Vol. 15, No. 6(2013) 1350026 (29 pages)", "doi": "10.1142/S0219199713500260", "categories": [ "math.AP" ], "abstract": "In this paper, we study the Strichartz-type estimates of the solution for the linear wave equation with inverse square potential. Assuming the initial data possesses additional angular regularity, especially the radial initial data, the range of admissible pairs is improved. As an application, we show the global well-posedness of the semi-linear wave equation with inverse-square potential $\\partial_t^2 u-\\Delta u+\\frac{a}{|x|^2}u=\\pm|u|^{p-1}u$ for power $p$ being in some regime when the initial data are radial. This result extends the well-posedness result in Planchon, Stalker, and Tahvildar-Zadeh.", "revisions": [ { "version": "v1", "updated": "2013-12-06T01:04:45.000Z" } ], "analyses": { "subjects": [ "35Q40", "35Q55", "47J35" ], "keywords": [ "inverse square potential", "wave equation", "strichartz estimates", "initial data possesses additional angular", "data possesses additional angular regularity" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.1745M" } } }