{ "id": "1312.1606", "version": "v1", "published": "2013-12-05T16:25:56.000Z", "updated": "2013-12-05T16:25:56.000Z", "title": "Weak KAM theorem for Hamilton-Jacobi equations", "authors": [ "Xifeng Su", "Jun Yan" ], "comment": "31 pages", "categories": [ "math.DS", "math.AP", "math.OC" ], "abstract": "In this paper, we generalize weak KAM theorem from positive Lagrangian systems to \"proper\" Hamilton-Jacobi equations. We introduce an implicitly defined solution semigroup of evolutionary Hamilton-Jacobi equations. By exploring the properties of the solution semigroup, we prove the convergence of solution semigroup and existence of weak KAM solutions for stationary equations: \\begin{equation*} H(x, u, d_x u)=0. \\end{equation*}", "revisions": [ { "version": "v1", "updated": "2013-12-05T16:25:56.000Z" } ], "analyses": { "subjects": [ "37J50", "49L25" ], "keywords": [ "generalize weak kam theorem", "evolutionary hamilton-jacobi equations", "weak kam solutions", "stationary equations", "implicitly defined solution semigroup" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.1606S" } } }