{ "id": "1312.1072", "version": "v2", "published": "2013-12-04T09:18:15.000Z", "updated": "2014-03-15T05:23:35.000Z", "title": "A Dynamical Approach to Viscosity Solutions of Hamilton-Jacobi Equations", "authors": [ "Lin Wang", "Jun Yan" ], "comment": "This paper has been withdrawn by the author due to a crucial error in Lemma 3.4", "categories": [ "math.DS" ], "abstract": "In this paper, we consider the following Hamilton-Jacobi equation with initial condition: \\begin{equation*} \\begin{cases} \\partial_tu(x,t)+H(x,t,u(x,t),\\partial_xu(x,t))=0, u(x,0)=\\phi(x). \\end{cases} \\end{equation*} Under some assumptions on the convexity of $H(x,t,u,p)$ w.r.t. $p$, we develop a dynamical approach to viscosity solutions and show that there exists an intrinsic connection between viscosity solutions and certain minimal characteristics.", "revisions": [ { "version": "v2", "updated": "2014-03-15T05:23:35.000Z" } ], "analyses": { "keywords": [ "viscosity solutions", "hamilton-jacobi equation", "dynamical approach", "initial condition", "intrinsic connection" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.1072W" } } }