{ "id": "1312.0251", "version": "v1", "published": "2013-12-01T17:25:32.000Z", "updated": "2013-12-01T17:25:32.000Z", "title": "$3$-class field towers of exact length $3$", "authors": [ "MIchael R. Bush", "Daniel C. Mayer" ], "comment": "8 pages", "categories": [ "math.NT", "math.GR" ], "abstract": "The $p$-group generation algorithm is used to verify that the Hilbert $3$-class field tower has length $3$ for certain imaginary quadratic fields $K$ with $3$-class group $\\mathrm{Cl}_3(K) \\cong [3,3]$. Our results provide the first examples of finite $p$-class towers of length $> 2$ for an odd prime $p$.", "revisions": [ { "version": "v1", "updated": "2013-12-01T17:25:32.000Z" } ], "analyses": { "subjects": [ "11R37", "11R11", "11R29", "20D15", "20F14" ], "keywords": [ "class field tower", "exact length", "imaginary quadratic fields", "group generation algorithm", "class group" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.0251B" } } }