{ "id": "1311.7420", "version": "v1", "published": "2013-11-28T20:51:21.000Z", "updated": "2013-11-28T20:51:21.000Z", "title": "A generalization of Toeplitz operators on the Bergman space", "authors": [ "Daniel Suárez" ], "comment": "17 pages", "categories": [ "math.FA" ], "abstract": "If $\\mu$ is a finite measure on the unit disc and $k\\ge 0$ is an integer, we study a generalization derived from Englis's work, $T_\\mu^{(k)}$, of the traditional Toeplitz operators on the Bergman space $A^2$, which are the case $k=0$. Among other things, we prove that when $\\mu\\ge 0$, these operators are bounded if and only if $\\mu$ is a Carleson measure, and we obtain some estimates for their norms.", "revisions": [ { "version": "v1", "updated": "2013-11-28T20:51:21.000Z" } ], "analyses": { "keywords": [ "bergman space", "generalization", "traditional toeplitz operators", "unit disc", "finite measure" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.7420S" } } }