{ "id": "1311.7375", "version": "v1", "published": "2013-11-28T17:12:32.000Z", "updated": "2013-11-28T17:12:32.000Z", "title": "On the Leray-Schauder degree of the Toda system on compact surfaces", "authors": [ "Andrea Malchiodi", "David Ruiz" ], "comment": "5 pages", "categories": [ "math.AP" ], "abstract": "In this paper we consider the so-called Toda system of equations on a compact surface. In particular, we discuss the parity of the Leray-Schauder degree of that problem. Our main tool is a theorem of Krasnoselskii and Zabreiko on the degree of maps symmetric with respect to a subspace. This result yields new existence results as well as a new proof of previous results in literature.", "revisions": [ { "version": "v1", "updated": "2013-11-28T17:12:32.000Z" } ], "analyses": { "keywords": [ "toda system", "compact surface", "leray-schauder degree", "main tool", "maps symmetric" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.7375M" } } }