{ "id": "1311.7023", "version": "v3", "published": "2013-11-27T16:04:38.000Z", "updated": "2014-07-05T14:47:35.000Z", "title": "Quenched Invariance Principle for the Random Walk on the Penrose Tiling", "authors": [ "Zs. Bartha", "A. Telcs" ], "comment": "15 pages, 1 figure", "categories": [ "math.PR" ], "abstract": "We consider the simple random walk on the graph corresponding to a Penrose tiling. We prove that the path distribution of the walk converges weakly to that of a non-degenerate Brownian motion for almost every Penrose tiling with respect to the appropriate invariant measure on the set of tilings. Our tool for this is the corrector method.", "revisions": [ { "version": "v3", "updated": "2014-07-05T14:47:35.000Z" } ], "analyses": { "subjects": [ "60F17" ], "keywords": [ "quenched invariance principle", "penrose tiling", "simple random walk", "appropriate invariant measure", "non-degenerate brownian motion" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.7023B" } } }