{ "id": "1311.6997", "version": "v1", "published": "2013-11-27T15:10:31.000Z", "updated": "2013-11-27T15:10:31.000Z", "title": "A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on bounded domains", "authors": [ "Matteo Bonforte", "Juan Luis Vázquez" ], "categories": [ "math.AP" ], "abstract": "We investigate quantitative properties of the nonnegative solutions $u(t,x)\\ge 0$ to the nonlinear fractional diffusion equation, $\\partial_t u + {\\mathcal L} (u^m)=0$, posed in a bounded domain, $x\\in\\Omega\\subset {\\mathbb R}^N$ with $m>1$ for $t>0$. As ${\\mathcal L}$ we use one of the most common definitions of the fractional Laplacian $(-\\Delta)^s$, $0