{ "id": "1311.6803", "version": "v2", "published": "2013-11-10T17:08:11.000Z", "updated": "2014-10-03T15:39:42.000Z", "title": "A Sufficient Condition for Disproving Descartes's Conjecture on Odd Perfect Numbers", "authors": [ "Jose Arnaldo B. Dris" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "Let $\\sigma(x)$ be the sum of the divisors of $x$. If $N$ is odd and $\\sigma(N) = 2N$, then the odd perfect number $N$ is said to be given in Eulerian form if $N = {q^k}{n^2}$ where $q$ is prime with $q \\equiv k \\equiv 1 \\pmod 4$ and $\\gcd(q,n) = 1$. In this note, we show that $q < n$ implies that Descartes's conjecture (previously Sorli's conjecture), $k = \\nu_{q}(N) = 1$, is not true. This then implies an unconditional proof for the biconditional $$k = \\nu_{q}(N) = 1 \\Longleftrightarrow n < q.$$ Lastly, following a recent result of Cohen and Sorli, we show that if $q < n$, then either $q > 5$ or $k > 5$ is true.", "revisions": [ { "version": "v1", "updated": "2013-11-10T17:08:11.000Z", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-10-03T15:39:42.000Z" } ], "analyses": { "subjects": [ "11A05", "11J25", "11J99" ], "keywords": [ "odd perfect number", "disproving descartess conjecture", "sufficient condition", "sorlis conjecture", "unconditional proof" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.6803D" } } }