{ "id": "1311.6584", "version": "v1", "published": "2013-11-26T08:24:44.000Z", "updated": "2013-11-26T08:24:44.000Z", "title": "The (B) conjecture for uniform measures in the plane", "authors": [ "Amir Livne Bar-on" ], "comment": "10 pages", "categories": [ "math.FA", "math.MG" ], "abstract": "We prove that for any two centrally-symmetric convex shapes $K,L \\subset \\mathbb{R}^2$, the function $t \\mapsto |e^t K \\cap L|$ is log-concave. This extends a result of Cordero-Erausquin, Fradelizi and Maurey in the two dimensional case. Possible relaxations of the condition of symmetry are discussed.", "revisions": [ { "version": "v1", "updated": "2013-11-26T08:24:44.000Z" } ], "analyses": { "keywords": [ "uniform measures", "conjecture", "centrally-symmetric convex shapes", "dimensional case", "cordero-erausquin" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.6584L" } } }