{ "id": "1311.6212", "version": "v1", "published": "2013-11-25T05:38:57.000Z", "updated": "2013-11-25T05:38:57.000Z", "title": "The primitive cohomology of the theta divisor of an abelian fivefold", "authors": [ "E. Izadi", "Cs. Tamas", "J. Wang" ], "comment": "59 pages", "categories": [ "math.AG" ], "abstract": "The primitive cohomology of the theta divisor of a principally polarized abelian variety of dimension $g$ is a Hodge structure of level $g-3$. The Hodge conjecture predicts that it is contained in the image, under the Abel-Jacobi map, of the cohomology of a family of curves in the theta divisor. In this paper we use the Prym map to show that this version of the Hodge conjecture is true for the theta divisor of a general abelian fivefold.", "revisions": [ { "version": "v1", "updated": "2013-11-25T05:38:57.000Z" } ], "analyses": { "subjects": [ "14C30" ], "keywords": [ "theta divisor", "primitive cohomology", "general abelian fivefold", "hodge conjecture predicts", "hodge structure" ], "note": { "typesetting": "TeX", "pages": 59, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.6212I" } } }