{ "id": "1311.6120", "version": "v2", "published": "2013-11-24T13:44:56.000Z", "updated": "2014-02-16T14:20:10.000Z", "title": "The circle method and bounds for $L$-functions - IV: Subconvexity for twists of $GL(3)$ $L$-functions - B", "authors": [ "Ritabrata Munshi" ], "comment": "Second draft: 36 pages, several minor errors corrected", "categories": [ "math.NT" ], "abstract": "Let $\\pi$ be a $SL(3,\\mathbb Z)$ Hecke-Maass cusp form satisfying the Ramanujan conjecture and the Selberg-Ramanujan conjecture, and let $\\chi$ be a primitive Dirichlet character modulo $M$, which we assume to be prime for simplicity. We will prove the following subconvex bound $$ L\\left(\\tfrac{1}{2},\\pi\\otimes\\chi\\right)\\ll_{\\pi,\\varepsilon} M^{\\frac{3}{4}-\\frac{1}{1612}+\\varepsilon}. $$", "revisions": [ { "version": "v2", "updated": "2014-02-16T14:20:10.000Z" } ], "analyses": { "keywords": [ "circle method", "subconvexity", "primitive dirichlet character modulo", "hecke-maass cusp form satisfying", "selberg-ramanujan conjecture" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.6120M" } } }