{ "id": "1311.6061", "version": "v1", "published": "2013-11-23T22:12:00.000Z", "updated": "2013-11-23T22:12:00.000Z", "title": "Periodic Orbits in the Kepler-Heisenberg Problem", "authors": [ "Corey Shanbrom" ], "comment": "19 pages, 3 figures", "categories": [ "math.DS", "math-ph", "math.DG", "math.MP" ], "abstract": "One can formulate the classical Kepler problem on the Heisenberg group, the simplest sub-Riemannian manifold. We take the sub-Riemannian Hamiltonian as our kinetic energy, and our potential is the fundamental solution to the Heisenberg sub-Laplacian. The resulting dynamical system is known to contain a fundamental integrable subsystem. Here we use variational methods to prove that the Kepler-Heisenberg system admits periodic orbits with $k$-fold rotational symmetry for any odd integer $k\\geq 3$. Approximations are shown for $k=3$.", "revisions": [ { "version": "v1", "updated": "2013-11-23T22:12:00.000Z" } ], "analyses": { "subjects": [ "53C17", "37N05", "37J45", "70H12", "70H06" ], "keywords": [ "kepler-heisenberg problem", "kepler-heisenberg system admits periodic orbits", "simplest sub-riemannian manifold", "fold rotational symmetry", "heisenberg group" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.6061S" } } }