{ "id": "1311.5654", "version": "v1", "published": "2013-11-22T05:04:03.000Z", "updated": "2013-11-22T05:04:03.000Z", "title": "Generic Continuity of Metric Entropy for Volume-preserving Diffeomorphisms", "authors": [ "Jiagang Yang", "Yunhua Zhou" ], "categories": [ "math.DS" ], "abstract": "Let $M$ be a compact manifold and $\\text{Diff}^1_m(M)$ be the set of $C^1$ volume-preserving diffeomorphisms of $M$. We prove that there is a residual subset $\\mathcal {R}\\subset \\text{Diff}^1_m(M)$ such that each $f\\in \\mathcal{R}$ is a continuity point of the map $g\\to h_m(g)$ from $\\text{Diff}^1_m(M)$ to $\\mathbb{R}$, where $h_m(g)$ is the metric entropy of $g$ with respect to volume measure $m$.", "revisions": [ { "version": "v1", "updated": "2013-11-22T05:04:03.000Z" } ], "analyses": { "keywords": [ "metric entropy", "volume-preserving diffeomorphisms", "generic continuity", "compact manifold", "residual subset" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.5654Y" } } }