{ "id": "1311.5436", "version": "v1", "published": "2013-11-21T15:01:29.000Z", "updated": "2013-11-21T15:01:29.000Z", "title": "Finite compactifications of $ω^* \\setminus \\{x\\}$", "authors": [ "Max. F. Pitz", "Rolf Suabedissen" ], "comment": "6 pages", "categories": [ "math.GN" ], "abstract": "We prove that under [CH], finite compactifications of $\\omega^* \\setminus \\{x\\}$ are homeomorphic to $\\omega^*$. Moreover, in each case, the remainder consists almost exclusively of $P$-points, apart from possibly one point. Similar results are obtained for other, related classes of spaces, amongst them $S_\\kappa$, the $\\kappa$-Parovi\\v{c}enko space of weight $\\kappa$. Also, some parallels are drawn to the Cantor set and the Double Arrow space.", "revisions": [ { "version": "v1", "updated": "2013-11-21T15:01:29.000Z" } ], "analyses": { "subjects": [ "54D35" ], "keywords": [ "finite compactifications", "cantor set", "double arrow space", "remainder consists", "similar results" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.5436P" } } }