{ "id": "1311.4788", "version": "v1", "published": "2013-11-19T15:57:17.000Z", "updated": "2013-11-19T15:57:17.000Z", "title": "Group actions and geometric combinatorics in ${\\mathbb F}_q^d$", "authors": [ "M. Bennett", "D. Hart", "A. Iosevich", "J. Pakianathan", "M. Rudnev" ], "comment": "26 pages", "categories": [ "math.CO", "math.CA", "math.NT" ], "abstract": "In this paper we apply a group action approach to the study of Erd\\H os-Falconer type problems in vector spaces over finite fields and use it to obtain non-trivial exponents for the distribution of simplices. We prove that there exists $s_0(d)