{ "id": "1311.4600", "version": "v3", "published": "2013-11-19T01:05:10.000Z", "updated": "2019-10-28T23:08:00.000Z", "title": "Small gaps between primes", "authors": [ "James Maynard" ], "comment": "25 pages; corrected typos", "categories": [ "math.NT" ], "abstract": "We introduce a refinement of the GPY sieve method for studying prime $k$-tuples and small gaps between primes. This refinement avoids previous limitations of the method, and allows us to show that for each $k$, the prime $k$-tuples conjecture holds for a positive proportion of admissible $k$-tuples. In particular, $\\liminf_{n}(p_{n+m}-p_n)<\\infty$ for any integer $m$. We also show that $\\liminf(p_{n+1}-p_n)\\le 600$, and, if we assume the Elliott-Halberstam conjecture, that $\\liminf_n(p_{n+1}-p_n)\\le 12$ and $\\liminf_n (p_{n+2}-p_n)\\le 600$.", "revisions": [ { "version": "v2", "updated": "2013-11-20T17:37:12.000Z", "comment": "23 pages; Mathematica file included with source documents; Error on page 21 fixed", "journal": null, "doi": null }, { "version": "v3", "updated": "2019-10-28T23:08:00.000Z" } ], "analyses": { "subjects": [ "11N05", "11N35", "11N36" ], "keywords": [ "small gaps", "gpy sieve method", "tuples conjecture holds", "elliott-halberstam conjecture", "refinement avoids" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.4600M" } } }