{ "id": "1311.4510", "version": "v1", "published": "2013-11-18T19:41:20.000Z", "updated": "2013-11-18T19:41:20.000Z", "title": "On the quasi-invariance of the Wiener measure on path spaces and the anticipative integrals over a Riemannian manifold", "authors": [ "Adnan Aboulalaa" ], "comment": "26 pages", "categories": [ "math.PR" ], "abstract": "Some parts of stochastic analysis on curved spaces are revisted. A concise proof of the quasi-invariance of the Wiener measure on the path spaces over a Riemannian manifold is presented. The shifts are allowed to be in the Cameron-Martin space and random. The second part of the paper presents some remarks on the anticipative integrals on Riemannian manifolds.", "revisions": [ { "version": "v1", "updated": "2013-11-18T19:41:20.000Z" } ], "analyses": { "subjects": [ "58J65", "60H07", "28C20" ], "keywords": [ "riemannian manifold", "path spaces", "wiener measure", "anticipative integrals", "quasi-invariance" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.4510A" } } }