{ "id": "1311.4429", "version": "v1", "published": "2013-11-18T15:54:56.000Z", "updated": "2013-11-18T15:54:56.000Z", "title": "Geometric characterization of $L_1$-spaces", "authors": [ "Normuxammad Yadgorov", "Mukhtar Ibragimov", "Karimbergen Kudaybergenov" ], "comment": "Accepted to publication in the journal Studia Mathematica. arXiv admin note: text overlap with arXiv:math/0305342 by other authors", "journal": "Studia Mathematica 219 (2) 2013, 98-107", "doi": "10.4064/sm219-2-1", "categories": [ "math.FA", "math.OA" ], "abstract": "The paper is devoted to a description of all strongly facially symmetric spaces which are isometrically isomorphic to $L_1$-spaces. We prove that if $Z$ is a real neutral strongly facially symmetric space such that every maximal geometric tripotent from the dual space of $Z$ is unitary then, the space $Z$ is isometrically isomorphic to the space $L_1(\\Omega, \\Sigma, \\mu),$ where $(\\Omega, \\Sigma, \\mu)$ is an appropriate measure space having the direct sum property.", "revisions": [ { "version": "v1", "updated": "2013-11-18T15:54:56.000Z" } ], "analyses": { "subjects": [ "46B20" ], "keywords": [ "geometric characterization", "direct sum property", "real neutral strongly facially symmetric", "neutral strongly facially symmetric space", "appropriate measure space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.4429Y" } } }