{ "id": "1311.4083", "version": "v1", "published": "2013-11-16T17:53:38.000Z", "updated": "2013-11-16T17:53:38.000Z", "title": "Inheriting of chaos in nonautonomous dynamical systems", "authors": [ "Marta Štefánková" ], "comment": "6 pages, no figures", "categories": [ "math.DS" ], "abstract": "We consider nonautonomous discrete dynamical systems $\\{ f_n\\}_{n\\ge 1}$, where every $f_n$ is a surjective continuous map $[0,1]\\to [0,1]$ such that $f_n$ converges uniformly to a map $f$. We show, among others, that if $f$ is chaotic in the sense of Li and Yorke then the nonautonomous system $ \\{ f_n\\}_{n\\ge 1}$ is Li-Yorke chaotic as well, and that the same is true for distributional chaos. If $f$ has zero topological entropy then the nonautonomous system inherits its infinite $\\omega$-limit sets.", "revisions": [ { "version": "v1", "updated": "2013-11-16T17:53:38.000Z" } ], "analyses": { "subjects": [ "37B05", "37B20", "37B40", "37B55", "54H20" ], "keywords": [ "nonautonomous dynamical systems", "inheriting", "nonautonomous discrete dynamical systems", "li-yorke chaotic", "distributional chaos" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.4083S" } } }