{ "id": "1311.4041", "version": "v2", "published": "2013-11-16T10:00:26.000Z", "updated": "2014-03-23T03:16:43.000Z", "title": "The Mean Square of Divisor Function", "authors": [ "Chaohua Jia", "Ayyadurai Sankaranarayanan" ], "comment": "This is a revised version", "categories": [ "math.NT" ], "abstract": "Let $d(n)$ be the divisor function. In 1916, S. Ramanujan stated but without proof that $$\\sum_{n\\leq x}d^2(n)=xP(\\log x)+E(x), $$ where $P(y)$ is a cubic polynomial in $y$ and $$ E(x)=O(x^{{3\\over 5}+\\epsilon}), $$ where $\\epsilon$ is a sufficiently small positive constant. He also stated that, assuming the Riemann Hypothesis(RH), $$ E(x)=O(x^{{1\\over 2}+\\epsilon}). $$ In 1922, B. M. Wilson proved the above result unconditionally. The direct application of the RH would produce $$ E(x)=O(x^{1\\over 2}(\\log x)^5\\log\\log x). $$ In 2003, K. Ramachandra and A. Sankaranarayanan proved the above result without any assumption. In this paper, we shall prove $$ E(x)=O(x^{1\\over 2}(\\log x)^5). $$", "revisions": [ { "version": "v2", "updated": "2014-03-23T03:16:43.000Z" } ], "analyses": { "keywords": [ "divisor function", "mean square", "direct application", "cubic polynomial", "riemann hypothesis" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.4041J" } } }