{ "id": "1311.2270", "version": "v1", "published": "2013-11-10T13:25:34.000Z", "updated": "2013-11-10T13:25:34.000Z", "title": "On linear operators with s-nuclear adjoints: $0< s \\le 1$", "authors": [ "O. I. Reinov" ], "comment": "11 pages, AMS TeX", "categories": [ "math.FA" ], "abstract": "If $ s\\in (0,1]$ and $ T$ is a linear operator with $ s$-nuclear adjoint from a Banach space $ X$ to a Banach space $ Y$ and if one of the spaces $ X^*$ or $ Y^{***}$ has the approximation property of order $s,$ $AP_s,$ then the operator $ T$ is nuclear. The result is in a sense exact. For example, it is shown that for each $r\\in (2/3, 1]$ there exist a Banach space $Z_0$ and a non-nuclear operator $ T: Z_0^{**}\\to Z_0$ so that $Z_0^{**}$ has a Schauder basis, $ Z_0^{***}$ has the $AP_s$ for every $s\\in (0,r)$ and $T^*$ is $r$-nuclear.", "revisions": [ { "version": "v1", "updated": "2013-11-10T13:25:34.000Z" } ], "analyses": { "keywords": [ "linear operator", "s-nuclear adjoints", "banach space", "schauder basis", "approximation property" ], "note": { "typesetting": "AMS-TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1311.2270R" } } }